Login / Signup

Hybridization selects for prime-numbered life cycles in Magicicada: An individual-based simulation model of a structured periodical cicada population.

Jaakko ToivonenLutz Fromhage
Published in: Ecology and evolution (2020)
We investigate competition between separate periodical cicada populations each possessing different life-cycle lengths. We build an individual-based model to simulate the cicada life cycle and allow random migrations to occur between patches inhabited by the different populations. We show that if hybridization between different cycle lengths produces offspring that have an intermediate life-cycle length, then predation acts disproportionately to select against the hybrid offspring. This happens because they emerge in low densities without the safety-in-numbers provided by either parent population. Thus, prime-numbered life cycles that can better avoid hybridization are favored. However, we find that this advantage of prime-numbered cycles occurs only if there is some mechanism that can occasionally synchronize emergence between local populations in sufficiently many patches.
Keyphrases
  • life cycle
  • single molecule
  • high fat diet
  • nucleic acid
  • genetic diversity
  • type diabetes
  • label free
  • metabolic syndrome
  • adipose tissue