Login / Signup

Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction.

Xiaozhi SuYu WangJing ZhouSongqi GuJiong LiShuo Zhang
Published in: Journal of the American Chemical Society (2018)
Developing highly efficient oxygen evolution reaction (OER) catalysts and understanding their activity are pivotal for electrochemical conversion technologies. Here, we report NiFe Prussian blue analogue (PBA) as a promising electrocatalyst for OER in alkaline conditions. This material has an impressively low overpotential of 258 mV that reaches a current density of 10 mA cm-2. Post-mortem characterization showed that the as-prepared catalyst is entirely transformed into amorphous nickel hydroxide after the electrochemical treatment, and Ni(OH)2 acts as the active species. Operando X-ray spectroscopic studies further found that this in situ generated Ni(OH)2 displays an unique feature that allows deprotonation under applied potential creating NiOOH2- x that contains Ni4+ ions. The deprotonation reaction is reversible and potential-dependent, i.e., the amount of Ni4+ increases with increasing applied potential. Theoretical calculations were used to show that the role of Ni4+ is to trigger oxidized oxygen ions as electrophilic centers with the subsequent activation of anion redox reactions for OER.
Keyphrases