Login / Signup

Data-driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue.

Vahidullah TacVivek D SreeManuel K RauschAdrian B Tepole
Published in: Engineering with computers (2022)
Closed-form constitutive models are the standard to describe soft tissue mechanical behavior. However, inherent pitfalls of an explicit functional form include poor fits to the data, non-uniqueness of fit, and sensitivity to parameters. Here we design deep neural networks (DNN) that satisfy desirable physics constraints in order to replace expert models of tissue mechanics. To guarantee stress-objectivity, the DNN takes strain (pseudo)-invariants as inputs, and outputs the strain energy and its derivatives. Polyconvexity of strain energy is enforced through the loss function. Direct prediction of both energy and derivative functions enables the computation of the elasticity tensor needed for a finite element implementation. We showcase the DNN ability to learn the anisotropic mechanical behavior of porcine and murine skin from biaxial test data. A multi-fidelity scheme that combines high fidelity experimental data with a low fidelity analytical approximation yields the best performance. Finite element simulations of tissue expansion with the DNN model illustrate the potential of this method to impact medical device design for skin therapeutics. We expect that the open data and software from this work will broaden the use of data-driven constitutive models of tissue mechanics.
Keyphrases