Login / Signup

Predicting the Stone-Free Status of Percutaneous Nephrolithotomy with the Machine Learning System.

Rami AlAzabOwais GhammazNabil ArdahAyah Nedal Al-BzourLayan ZeidatZahraa MawaliYaman B AhmedTha'er Abdulkareem AlguzoAzhar Mohanad Al-AlwaniMahmoud Samara
Published in: International journal of nephrology and renovascular disease (2023)
MLMs can be used with high accuracy in predicting SFS for patients undergoing PCNL. MLMs we utilized predicted the SFS with AUCs superior to those of GSS and S.T.O.N.E scores.
Keyphrases
  • machine learning
  • patients undergoing
  • minimally invasive
  • artificial intelligence
  • ultrasound guided
  • big data
  • radiofrequency ablation