Egg Yolk Immunoglobulin Supplementation Prevents Rat Liver from Aflatoxin B1-Induced Oxidative Damage and Genotoxicity.
Taotao QiuXing ShenXiangmei LiYunyun GongZhongmin ZouChunhong LiuFeng YeChenyang MiZhen-Lin XuYuanming SunJie LinHuidong ZhangHong-Tao LeiPublished in: Journal of agricultural and food chemistry (2018)
Egg yolk immunoglobulins (IgY), as nutraceutical supplement for therapeutic or prophylactic intervention, have been extensively studied. The effects of IgY on small molecular toxin-induced toxicity in animals are unclear. In the present study, the protection of highly purified and specific anti-AFB1 IgY against AFB1-induced genotoxicity and oxidative damage on the rat liver model were investigated. Our results revealed that AFB1 induced significant oxidative damage markers, as well as AFB1-induced protein expression in antioxidant, pro- and antiapoptosis processes in rat liver. These effects could be significantly inhibited by cogavage with anti-AFB1 IgY in a dose-dependent manner. However, anti-AFB1 IgY did not significantly induce hepatic CAT and SOD1. To explore mechanisms, metabolite experiments were established to evaluate the influence of anti-AFB1 IgY on the absorption of AFB1 in rats. Middle and high doses of anti-AFB1 IgY reduced hepatic AFB1-DNA adducts by 43.3% and 52.9%, AFB1- N7-guanine urinary adducts by 19.6% and 34.4%, and AFB1-albumin adducts by 10.5% and 21.1%, respectively. The feces of high dose anti-AFB1 IgY cogavaged rats contained approximately 2-fold higher AFB1 equivalents at 3-6 h after ingestion than AFB1 group feces, indicating IgY inhibited AFB1 uptake. These results had provided insight that anti-AFB1 IgY could prevent animal organs from damage caused by AFB1 and will be beneficial for the application of detoxification antibody as a supplement in food.