Magnetic-Field-Assisted Diffusion Motion of Magnetic Skyrmions.
Gang QinRuixuan ZhangChendi YangXiaowei LvKe PeiLiting YangXian-Hu LiuXuefeng ZhangRenchao ChePublished in: ACS nano (2022)
Studies of the diffusion dynamics of magnetic skyrmions have generated widespread interest in both fundamental physics and spintronics applications. Here we report the magnetic-field-assisted diffusion motion of skyrmions in a microstructured chiral FeGe magnet. We demonstrate the enhancement of diffusion motion of magnetic skyrmions that is manipulated and driven by an oscillatory magnetic field. Further, the directed diffusion of skyrmions is observed when an in-plane field was introduced to break the symmetry of the system. Finally, we demonstrate the application of a magnetic field can induce an arrangements transition of skyrmions assemble in microstructure, that is, from a stiff hexagonal lattice to a weak interactional isotropic state. By using a step-ascended magnetic field we finished the observation of a particle-like diffusive motion for magnetic skyrmions that transport from high-concentration regions to low-concentration regions and the diffusion flux is proportional to the concentration gradient followed Fick's law.