Login / Signup

New Submicron Low Gate Leakage In 0.52 Al 0.48 As-In 0.7 Ga 0.3 As pHEMT for Low-Noise Applications.

Mohamed Fauzi Packeer MohamedMohamad Faiz Mohamed OmarMuhammad Firdaus AkbarNor Azlin GhazaliMohd Hendra HairiShaili FalinaMohd Syamsul Nasyriq Samsol Baharin
Published in: Micromachines (2021)
Conventional pseudomorphic high electron mobility transistor (pHEMTs) with lattice-matched InGaAs/InAlAs/InP structures exhibit high mobility and saturation velocity and are hence attractive for the fabrication of three-terminal low-noise and high-frequency devices, which operate at room temperature. The major drawbacks of conventional pHEMT devices are the very low breakdown voltage (<2 V) and the very high gate leakage current (∼1 mA/mm), which degrade device and performance especially in monolithic microwave integrated circuits low-noise amplifiers (MMIC LNAs). These drawbacks are caused by the impact ionization in the low band gap, i.e., the InxGa(1-x)As ( x = 0.53 or 0.7) channel material plus the contribution of other parts of the epitaxial structure. The capability to achieve higher frequency operation is also hindered in conventional InGaAs/InAlAs/InP pHEMTs, due to the standard 1 μm flat gate length technology used. A key challenge in solving these issues is the optimization of the InGaAs/InAlAs epilayer structure through band gap engineering. A related challenge is the fabrication of submicron gate length devices using I-line optical lithography, which is more cost-effective, compared to the use of e-Beam lithography. The main goal for this research involves a radical departure from the conventional InGaAs/InAlAs/InP pHEMT structures by designing new and advanced epilayer structures, which significantly improves the performance of conventional low-noise pHEMT devices and at the same time preserves the radio frequency (RF) characteristics. The optimization of the submicron T-gate length process is performed by introducing a new technique to further scale down the bottom gate opening. The outstanding achievements of the new design approach are 90% less gate current leakage and 70% improvement in breakdown voltage, compared with the conventional design. Furthermore, the submicron T-gate length process also shows an increase of about 58% and 33% in fT and fmax, respectively, compared to the conventional 1 μm gate length process. Consequently, the remarkable performance of this new design structure, together with a submicron gate length facilitatesthe implementation of excellent low-noise applications.
Keyphrases
  • high frequency
  • air pollution
  • room temperature
  • high resolution
  • ionic liquid
  • mass spectrometry
  • pet ct
  • liquid chromatography
  • gas chromatography