A π-gel scaffold for assembling fullerene to photoconducting supramolecular rods.
Vishnu Sukumaran NairRahul Dev MukhopadhyayAkinori SaekiShu SekiAyyappanpillai AjayaghoshPublished in: Science advances (2016)
Nonequilibrium self-assembly of molecules holds a huge prospect as a tool for obtaining new-generation materials for future applications. Crystallization of neutral molecules within a supramolecular gel matrix is one example in which two nonequilibrium processes occur orthogonal to each other. On the other hand, electronically interacting donor-acceptor two-component systems are expected to form phase-miscible hybrid systems. Contrary to the expectation, we report the behavior of a π-gel, derived from oligo(p-phenylenevinylene), OPVA, as a scaffold for the phase separation and crystallization of fullerene (C60) to supramolecular rods with increased transient photoconductivity (φƩμmax = 2.4 × 10-4 cm2 V-1 s-1). The C60 supramolecular rods in the π-gel medium exhibited high photocurrent in comparison to C60 loaded in a non-π-gel medium. This finding provides an opportunity for large-scale preparation of micrometer-sized photoconducting rods of fullerenes for device application.