The protective properties of melatonin against aluminium-induced neuronal injury.
Ebtesam M Al-OlayanManal F El-KhadragyAhmed E Abdel MoneimPublished in: International journal of experimental pathology (2015)
Aluminium (Al) toxicity is closely linked to the pathogenesis of Alzheimer's disease (AD). This experimental study investigated the neuroprotective effect of melatonin (Mel; 10 mg/kg bwt) on aluminium chloride (AlCl3 ; 34 mg/kg bwt) induced neurotoxicity and oxidative stress in rats. Adult male albino Wistar rats were injected with AlCl3 for 7 days. The effect on brain structure, lipid peroxidation (LPO), nitric oxide (NO) levels, glutathione (GSH) content, antioxidant enzymes (SOD, CAT, GPx and GR), apoptotic proteins (Bax and Bcl-2) and an apoptotic enzyme (caspase-3) was investigated. No apparent changes occurred following the injection of melatonin. Melatonin pretreatment of the AlCl3 -administered rats reduced brain damage, and the tissues appeared like those of the control rats. Compared to treatment with AlCl3 , pretreatment with melatonin decreased LPO and NO levels and increased the GSH content and antioxidant enzyme activity. Moreover, melatonin increased the levels of the anti-apoptotic protein, Bcl-2, decreased the levels of the pro-apoptotic protein, Bax, and inhibited caspase-3 activity. Therefore, our results indicate that melatonin may provide therapeutic value against aluminium-induced oxidative stress and histopathological alternations in the rat brain and that these effects may be related to anti-apoptotic and antioxidant activities.
Keyphrases
- cell death
- oxidative stress
- anti inflammatory
- diabetic rats
- induced apoptosis
- nitric oxide
- high glucose
- dna damage
- hydrogen peroxide
- mass spectrometry
- drug induced
- magnetic resonance imaging
- protein protein
- endothelial cells
- combination therapy
- cognitive decline
- atomic force microscopy
- amyotrophic lateral sclerosis
- smoking cessation