Login / Signup

Comparative Analysis of Pelletized and Unpelletized Sunflower Husks Combustion Process in a Batch-Type Reactor.

Tomasz TurzyńskiJacek KluskaMateusz OchnioDariusz Kardaś
Published in: Materials (Basel, Switzerland) (2021)
This paper describes characteristics of the combustion of sunflower husk (SH), sunflower husk pellets (SHP), and, for comparison, hardwood pellets (HP). The experiments were carried out using a laboratory-scale combustion reactor. A proximate analysis showed that the material may constitute an alternative fuel, with a relatively high heating value (HHV) of 18 MJ/kg. For SHP, both the maximum combustion temperatures (TMAX = 1110 °C) and the kinetic parameters (temperature front velocity vt = 7.9 mm/min, combustion front velocity vc = 8 mm/min, mass loss rate vm = 14.7 g/min) of the process were very similar to those obtained for good-quality hardwood pellets (TMAX = 1090 °C, vt = 5.4 mm/min, vc = 5.2 mm/min, vm = 13.2 g/min) and generally very different form SH (TMAX = 840 °C, vt = 20.7 mm/min, vc = 19 mm/min, vm = 13.1 g/min). The analysis of ash from SH and SHP combustion showed that it has good physicochemical properties (ash melting point temperatures >1500 °C) and is safe for the environment. Furthermore, the research showed that the pelletization of SH transformed a difficult fuel into a high-quality substitute for hardwood pellets, giving a similar fuel consumption density (Fout = 0.083 kg/s·m2 for SHP and 0.077 kg/s·m2 for HP) and power output density (Pρ = MW/m2 for SHP and 1.5 MW/m2 for HP).
Keyphrases
  • municipal solid waste
  • sewage sludge
  • particulate matter
  • anaerobic digestion
  • wastewater treatment
  • air pollution
  • blood flow