Structural Changes in Primary Teeth of Diabetic Children: Composition and Ultrastructure Analysis.
Sadatullah SyedSyed M YassinAbdulrahman Yahya AlmalkiSalma Abubaker Abbas AliAbdulaziz M Maken AlqarniYousef M MoadiAbdulrahman Masoud AlkhaldiNasser M AlqahtaniJagadish HosmaniArtak HeboyanShankaragouda PatilPublished in: Children (Basel, Switzerland) (2022)
Diabetes affects the developing enamel by altering the mineralization process, which can have a detrimental effect on oral health. The objectives of this study were to examine the ultrastructure and composition of surface enamel in primary teeth of diabetic children and its clinical implications. Hundred extracted primary teeth from diabetic children (Test group: n = 50) and healthy children (Control group: n = 50), between 6 and 12 years of age, were subjected to scanning electron microscopy to qualitatively examine the enamel surface. Energy dispersive X-ray (EDX) analysis was performed to investigate the mass percentage of calcium (Ca) and phosphorous (P) in the surface enamel. Ultrastructural aberrations of surface enamel were observed in the test group teeth. Additionally, prism perforations were seen at the junction of rod and inter-rod enamel and the prisms were loosely packed. An even aprismatic layer of surface enamel was evident in the control group teeth. There was a statistically significant difference ( p < 0.05) of Ca and P mass percentage between the test and control group teeth. The mean mass percentage rates of Ca and P were 33.75% and 16.76%, respectively. A poor surface characteristic and elemental composition of the enamel surface of primary teeth is observed in diabetic children. Therefore, appropriate caries preventive measures are mandatory to maintain the structural integrity of the tooth in these patients.