Innovative Approach to Accelerate Wound Healing: Synthesis and Validation of Enzymatically Cross-Linked COL-rGO Biocomposite Hydrogels.
Luisbel GonzálezVíctor EspinozaMauricio TapiaValentina AedoIsleidy RuizManuel MeléndrezClaudio AguayoLeonard Ionuț AtanaseKatherina FernándezPublished in: Gels (Basel, Switzerland) (2024)
In this study, an innovative conductive hybrid biomaterial was synthetized using collagen (COL) and reduced graphene oxide (rGO) in order for it to be used as a wound dressing. The hydrogels were plasticized with glycerol and enzymatically cross-linked with horseradish peroxidase (HRP). A successful interaction among the components was demonstrated by FTIR, XRD, and XPS. It was demonstrated that increasing the rGO concentration led to higher conductivity and negative charge density values. Moreover, rGO also improved the stability of hydrogels, which was expressed by a reduction in the biodegradation rate. Furthermore, the hydrogel's stability against the enzymatic action of collagenase type I was also strengthened by both the enzymatic cross-linking and the polymerization of dopamine. However, their absorption capacity, reaching values of 215 g/g, indicates the high potential of the hydrogels to absorb fluids. The rise of these properties positively influenced the wound closure process, achieving an 84.5% in vitro closure rate after 48 h. These findings clearly demonstrate that these original composite biomaterials can be a viable choice for wound healing purposes.