In Vivo Tracking of Persistent Organic Pollutants via a Coaxially Integrated and Implanted Photofuel Microsensor.
Ying TangYanwen LiuJinmiao WangJuan WangZhihong LiuPublished in: Environmental science & technology (2023)
In vivo tracking of persistent organic pollutants (POPs) is of great significance for assessing their risks to the ecological environment and human health. However, existing in vivo POPs detection methods are limited by the lethal sampling of living organisms, complex sample preparation processes, or bulky testing equipment. Photoelectrochemical (PEC) sensing with the merits of high sensitivity and simple equipment is a fast-developed method for in vivo analysis. A major obstacle for in vivo PEC sensors is the separated implantation of multiple electrodes and a light source, which raises concerns like multielectrode biofouling and electroactive molecules interference in the complex environment, uncertain electrode implant distance, and multiple insertion operations. Here, a coaxially implanted photofuel microsensor was developed by hiding the optical fiber-based photoanode inside the glass capillary-based biocathode, and the model target PCB77 can be detected with an ultralow detection limit (2.8 fg/mL). This unique photoanode-biocathode-light source integrated structure ensures excellent selectivity, good antifouling ability and biocompatibility, high accuracy, and less implant mechanical damage. Combined with a handheld pH meter, our sensor achieved convenient and direct tracking of the bioaccumulation levels of PCB77 in freely swimming fish.