Whole-Body Magnetic Resonance Imaging Assessment of the Contributions of Adipose and Nonadipose Tissues to Cardiovascular Remodeling in Adolescents.
Jakob A HauserSamuel Joseph BurdenAjanthiha KarunakaranVivek MuthuranguAndrew M TaylorAlexander JonesPublished in: Journal of the American Heart Association (2023)
Background Greater body mass index is associated with cardiovascular remodeling in adolescents. However, body mass index cannot differentiate between adipose and nonadipose tissues. We examined how visceral and subcutaneous adipose tissue are linked with markers of early cardiovascular remodeling, independently from nonadipose tissue. Methods and Results Whole-body magnetic resonance imaging was done in 82 adolescents (39 overweight/obese; 36 female; median age, 16.3 [interquartile range, 14.4-18.1] years) to measure body composition and cardiovascular remodeling markers. Left ventricular diastolic function was assessed by echocardiography. Waist, waist:height ratio, and body mass index z scores were calculated. Residualized nonadipose tissue, subcutaneous adipose tissue, and visceral adipose tissue variables, uncorrelated with each other, were constructed using partial regression modeling to allow comparison of their individual contributions in a 3-compartment body composition model. Cardiovascular variables mostly related to nonadipose rather than adipose tissue. Nonadipose tissue was correlated positively with left ventricular mass ( r =0.81), end-diastolic volume ( r =0.70), stroke volume ( r =0.64), left ventricular mass:end-diastolic volume ( r =0.37), and systolic blood pressure ( r =0.35), and negatively with heart rate ( r =-0.33) (all P <0.01). Subcutaneous adipose tissue was associated with worse left ventricular diastolic function ( r =-0.42 to -0.48, P =0.0007-0.02) and higher heart rates ( r =0.34, P =0.007) but linked with better systemic vascular resistance ( r =-0.35, P =0.006). There were no significant relationships with visceral adipose tissue and no associations of any compartment with pulse wave velocity. Conclusions Simple anthropometry does not reflect independent effects of nonadipose tissue and subcutaneous adipose tissue on the adolescent cardiovascular system. This could result in normal cardiovascular adaptations to growth being misinterpreted as pathological sequelae of excess adiposity in studies reliant on such measures.
Keyphrases
- adipose tissue
- left ventricular
- body mass index
- insulin resistance
- body composition
- blood pressure
- heart rate
- physical activity
- magnetic resonance imaging
- high fat diet
- heart failure
- hypertrophic cardiomyopathy
- young adults
- cardiac resynchronization therapy
- acute myocardial infarction
- mitral valve
- weight gain
- aortic stenosis
- left atrial
- resistance training
- hypertensive patients
- gene expression
- bone mineral density
- metabolic syndrome
- computed tomography
- pulmonary hypertension
- skeletal muscle
- type diabetes
- blood flow
- mental health
- brain injury
- subarachnoid hemorrhage
- coronary artery disease
- blood glucose
- obese patients
- diffusion weighted imaging