Login / Signup

Infusion of high concentration of lactate in perfused liver, simulating in vivo hyperlactatemia, prevents the reduction of gluconeogenesis in Walker-256 tumor-bearing rats.

Isabele Gonçalves Frasson-UemuraGiuliana Regina BiaziDaniele Romani MikszaCarolina Campos Lima MoreiraPriscila CassollaGisele Lopes BertoliniRoberto Barbosa BazotteHelenir Medri de Souza
Published in: Journal of cellular biochemistry (2019)
Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 μM, but not 25 μM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 μM NADH, but not 25 μM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 μM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD+ ). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies.
Keyphrases
  • mycobacterium tuberculosis
  • magnetic resonance imaging
  • low dose
  • oxidative stress
  • climate change