Structures and spectroscopy of the ammonia eicosamer, (NH3)n=20.
Alhadji MalloumJean Jules FifenJeanet ConradiePublished in: The Journal of chemical physics (2018)
In this work, we reported structures and relative stabilities of the neutral ammonia eicosamer at the APFD/6-31++g(d,p) level of theory. Furthermore, we have examined the temperature dependence isomer distribution and reported the relative population of the ammonia eicosamer for temperatures ranging from 20 to 400 K. Moreover, a theoretical infrared (IR) spectroscopic study is performed to confirm our results. As a result, several stable structures have been identified as isomers of the ammonia eicosamer. The most stable structure is a cage-like isomer with two central solvated ammonia molecules. It is found that cage-like isomers with central solvated ammonia molecules are more stable than other types of structures. Besides, two fused tetrameric cyclic structures belonging to the C2 symmetry point group are also located. Moreover, other reported isomers exhibit an amorphous behavior with no definite symmetry. When considering the temperature dependence isomer distribution, we found that only cage-like isomers contribute to the population of the ammonia eicosamer. The most stable isomer dominates the population of the cluster for all the investigated temperatures. Our analysis shows that only the IR spectra of isomers that contribute to the relative population have their peaks in agreement with the experiment. This agreement could be an indication of the reliability of our proposed structures of the ammonia eicosamer and their relative stability.