Login / Signup

Anchoring an Artificial Protective Layer To Stabilize Potassium Metal Anode in Rechargeable K-O2 Batteries.

Neng XiaoJingfeng ZhengGerald GourdinLuke SchkeryantzYiying Wu
Published in: ACS applied materials & interfaces (2019)
Rechargeable potassium batteries, including the potassium-oxygen (K-O2) battery, are deemed as promising low-cost energy storage solutions. Nevertheless, the chemical stability of the K metal anode remains problematic and hinders their development. In the K-O2 battery, the electrolyte and dissolved oxygen tend to be reduced on the K metal anode, which consumes the active material continuously. Herein, an artificial protective layer is engineered on the K metal anode via a one-step method to mitigate side reactions induced by the solvent and reactive oxygen species. The chemical reaction between K and SbF3 leads to an inorganic composite layer that consists of KF, Sb, and KSb xF y on the surface. This in situ synthesized layer effectively prevents K anode corrosion while maintaining good K+ ionic conductivity in K-O2 batteries. Protection from O2 and moisture also ensures battery safety. Improved anode life span and cycling performance (>30 days) are further demonstrated. This work introduces a novel strategy to stabilize the K anode for rechargeable potassium metal batteries.
Keyphrases
  • ion batteries
  • solid state
  • reduced graphene oxide
  • reactive oxygen species
  • ionic liquid
  • mouse model
  • organic matter