Atomistic Engineering of Chemiluminogens: Synthesis, Properties and Polymerization of 2,3-Dihydro-Pyrrolo[3,4-d]Pyridazine-1,4-Dione Scaffolds.
Melek Pamuk AlgiZahide OztasSeha TirkeşAtilla CihanerFatih AlgiPublished in: Journal of fluorescence (2016)
Two chemiluminescent compounds containing 2,5-di(thien-2-yl)pyrrole and pyridazine units, namely 5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (5) and 6-phenyl-5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (6), were successfully synthesized and electrochemically polymerized. The compounds have chemiluminescent properties and glow in the presence of hydrogen peroxide in basic medium. The intensity of the glow can be increased dramatically by using Fe3+ ions, hemin (1.0 ppm) or blood samples (1.0 ppm) as catalyst. The compounds 5 and 6 have one well-defined irreversible oxidation peak at 1.08 V and 1.33 V vs Ag/AgCl, respectively. Electrochemical polymerization of both 5 and 6 were carried out successfully by repeating potential scanning in the presence of BF3. Et2O in an electrolyte solution of 0.1 M LiClO4 dissolved in acetonitrile. The electronic band gaps (Eg) of the polymers P5 and P6 were found to be 2.02 eV and 2.16 eV, respectively. On the other hand, the corresponding polymers are electroactive and exhibited electrochromic features. Graphical Abstract ᅟ.
Keyphrases
- hydrogen peroxide
- ionic liquid
- biofilm formation
- nitric oxide
- visible light
- quantum dots
- gold nanoparticles
- metal organic framework
- molecular dynamics simulations
- highly efficient
- room temperature
- high resolution
- high intensity
- escherichia coli
- pseudomonas aeruginosa
- candida albicans
- climate change
- cystic fibrosis
- human health
- solid state
- tissue engineering
- molecularly imprinted
- simultaneous determination