Login / Signup

Benzoselenadiazole-Functionalized H-Bonded Arylamide Foldamers: Solvent-Responsive Properties and Helix Self-Assembly Directed by Chalcogen Bonding in Solid State.

Chuan-Zhi LiuChi ZhangChang-Gen LiHui-Bin ChenWen YangZhong-Yi LiZhi-Yuan HuLiang XuBin ZhaiZhan-Ting Li
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2024)
In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D 1 H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se ⋅ ⋅ ⋅ N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se ⋅ ⋅ ⋅ N interactions beyond the crystalline state.
Keyphrases