PEGylated Strontium Sulfite Nanoparticles with Spontaneously Formed Surface-Embedded Protein Corona Restrict Off-Target Distribution and Accelerate Breast Tumour-Selective Delivery of siRNA.
Md Emranul KarimEzharul Hoque ChowdhuryPublished in: Journal of functional biomaterials (2022)
As transporters of RNAi therapeutics in preclinical and clinical studies, the application of nanoparticles is often hindered by their susceptibility to opsonin-mediated clearance, poor biological stability, ineffectual targeting, and undesirable effects on healthy cells. Prolonging the blood circulation time while minimizing the off-target distribution and associated toxicity is indispensable for the establishment of a clinically viable delivery system for therapeutic small interfering RNAs (siRNAs). Herein, we report a scalable and straightforward approach to fabricate non-toxic and biodegradable pH-responsive strontium sulfite nanoparticles (SSNs) wrapped with a hydrophilic coating material, biotinylated PEG to lessen unforeseen biological interactions. Surface functionalization of SSNs with PEG led to the generation of small and uniformly distributed particles with a significant affinity towards siRNAs and augmented internalization into breast cancer cells. A triple quadrupole liquid chromatography-mass spectrometry (LC-MS) was deployed to identify the proteins entrapped onto the SSNs, with the help of SwissProt.Mus_musculus database. The results demonstrated the reduction of opsonin proteins adsorption owing to the stealth effect of PEG. The distribution of PEGylated SSNs in mice after 4 h and 24 h of intravenous administration in breast tumour-bearing mice was found to be significantly less to the organs of the reticuloendothelial system (RES) and augmented accumulation in the tumour region. The anti-EGFR siRNA-loaded PEG-SSNs exerted a significant inhibitory effect on tumour development in the murine breast cancer model without any significant toxicity to healthy tissues. Therefore, PEGylated SSNs open up a new avenue for tumour-selective efficient delivery of siRNAs in managing breast cancer.
Keyphrases
- liquid chromatography
- mass spectrometry
- drug delivery
- cancer therapy
- high resolution mass spectrometry
- tandem mass spectrometry
- breast cancer cells
- small cell lung cancer
- oxidative stress
- gas chromatography
- gene expression
- simultaneous determination
- induced apoptosis
- capillary electrophoresis
- high performance liquid chromatography
- high fat diet induced
- emergency department
- stem cells
- tyrosine kinase
- solid phase extraction
- high resolution
- metabolic syndrome
- cell proliferation
- high dose
- cell cycle arrest
- signaling pathway
- virtual reality
- insulin resistance
- adipose tissue
- recombinant human
- amino acid
- drug induced
- adverse drug