Mesoporous Silica as a Drug Delivery System for Naproxen: Influence of Surface Functionalization.
Lukáš ŽidVladimir ZelenakMiroslav AlmášiAdriana ZeleňákováJaroslava SzücsováJozef BednarčíkMonika ŠulekováAlexander HudákLucia VáhovskáPublished in: Molecules (Basel, Switzerland) (2020)
In this work we describe the relationship between surface modification of hexagonally ordered mesoporous silica SBA-15 and loading/release characteristics of nonsteroidal anti-inflammatory drug (NSAID) naproxen. Mesoporous silica (MPS) was modified with 3-aminopropyl, phenyl and cyclohexyl groups by grafting method. Naproxen was adsorbed into pores of the prepared MPS from ethanol solution using a solvent evaporation method. The release of the drug was performed in buffer medium at pH 2 and physiological solution at pH 7.4. Parent MPSs as well as naproxen loaded MPSs were characterized using physicochemical techniques such as nitrogen adsorption/desorption, thermogravimetric analysis (TG), Zeta potential analysis, Fourier transform infrared spectroscopy (FT-IR), and elemental analysis. The amount of naproxen released from the MPSs into the medium was determined by high-performance liquid chromatography (HPLC). It was shown that the adsorption and desorption characteristics of naproxen are dependent on the pH of the solution and the surface functionalization of the host.