Login / Signup

Excited states of ortho-nitrobenzaldehyde as a challenging case for single- and multi-reference electronic structure theory.

Dóra VörösSebastian Mai
Published in: Journal of computational chemistry (2023)
We present a large set of vertical excitation calculations for the ortho-nitrobenzaldehyde (oNBA) molecule, which exhibits a very challenging excited-state electronic structure like other nitroaromatic compounds. The single-reference methods produce mostly consistent results up to about 5.5 eV. By contrast, the CAS second-order perturbation theory (CASPT2) results depend sensitively on the employed parameters. At the CAS self-consistent field level, the energies of the bright ππ * $$ {\pi \pi}^{\ast } $$ states are strongly overestimated while doubly excited states appear too low and mix with these ππ * $$ {\pi \pi}^{\ast } $$ states. This mixing hampers the CASPT2 step, leading to inconsistent results. Only by increasing the number of states in the state-averaging step to about 40-to cover all bright ππ * $$ {\pi \pi}^{\ast } $$ states embedded in the double excitations-and employing extended multistate CASPT2 could CASPT2 results consistent with experiment be obtained. We assign the four bands in the molecule's spectrum: The weakest band at 3.7 eV arises from the n NO 2 π * $$ {n}_{\mathrm{NO}2}{\pi}^{\ast } $$ states, the second one at 4.4 eV from the ππ * $$ {\pi \pi}^{\ast } $$ ( L b $$ {L}_b $$ ) state, the shoulder at 5.2 eV from the ππ * $$ {\pi \pi}^{\ast } $$ ( L a $$ {L}_a $$ ) state, and the maximum at 5.7 eV from the ππ * $$ {\pi \pi}^{\ast } $$ ( B a / B b $$ {B}_a/{B}_b $$ ) states. We also highlight the importance of modern wave function analysis techniques in elucidating the absorption spectrum of challenging molecules.
Keyphrases
  • magnetic resonance imaging
  • crispr cas
  • magnetic resonance
  • molecular dynamics
  • density functional theory