Intercage Polymerization of Postfunctionalized Phosphine Organic Prisms into Cage-Based Assemblies with Tunable Morphologies.
Gui-Fang MuQiang YanPublished in: ACS macro letters (2024)
Great effort has been dedicated to the engineering of porous organic cages (POCs) in geometry and topology. Yet, harnessing these cage-like entities as premade building units to construct infinite cage-based superstructures remains elusive. In this study, we design a type of vertex-modified phosphine organic prism by a postfunctionalized approach and use it as a ditopic cage monomer to achieve an intercage supramolecular polymerization via the synergy of metal coordination and π-π dimerization. The resulting cage-by-cage polymers can further hierarchically organize into superstructures of diverse morphologies and dimensionalities, including 1D fibers, 2D lamellae, and 3D vesicles. Control over the cosolvents is capable of well regulating their structural hierarchies and self-assembled shapes. This would pave a way for the creation of cage-based supramolecular assemblies and nanomaterials.
Keyphrases