Supramolecular Polymer-Based Fluorescent Microfibers for Switchable Optical Waveguides.
Cai-Li SunZhenhua GaoKun-Xu TengLi-Ya NiuYu-Zhe ChenYong Sheng ZhaoQing-Zheng YangPublished in: ACS applied materials & interfaces (2018)
We report the switchable optical waveguide microfibers based on fluorescent supramolecular polymer for the first time. The pillar[5]arene-based supramolecular polymeric microfibers were prepared easily from the viscous solution of bispillar[5]arene host (bisP5A) and diphenylanthracene-derived guest (GD). The resulting microfibers act as an active optical waveguide material with long propagation distance (400 μm) and low optical propagation loss (0.01 dB/μm). When photoresponsive dithienylethene-derived guest (GDTE) was added, the resulting ternary microfibers show switchable optical waveguide by the noninvasive control of UV/vis light with negligible fatigue over four cycles. This convenient preparation method is also applied for the quadruple-hydrogen-bonded fluorescent supramolecular polymeric microfibers which imply good light propagation property with an optical loss coefficient of 0.02 dB/μm.