Login / Signup

Fusiform-Shaped g-C3 N4 Capsules with Superior Photocatalytic Activity.

Zhixiang JiangXiao ZhangHsueh-Shih ChenPing YangSan Ping Jiang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Carbon nitride (g-C3 N4 ) nanostructure rebuilding is an effective means to modify its photocatalytic properties, especially the hollow micron-nanostructure. The increased scattering in the body effectively improves the light utilization efficiency and improves catalytic properties. In this work, fusiform-shaped g-C3 N4 capsules are created by controlling the nucleation kinetics of supramolecular assemblies. The fusiform-shaped capsule micron-nanostructure is synthesized with ultrathin wall thickness and adjusted carbon/nitride ratios which decrease the recombination rate of photo-generated carriers. The hollow nanostructure and relatively higher specific surface area of the fusiform-shaped capsule effectively enhance light scattering inside body and lead to an enhanced carrier utilization efficiency. Moreover, the decrease of bandgap and relatively negative conduction band position affect the response of hollow fusiform-shaped g-C3 N4 capsules (Hf-g-C3 N4 ) in visible light region and improve the photo-reducing performance. In term of H2 evolution property, Hf-g-C3 N4 has been improved to 7052 µmol g-1 h-1 , which is 10.9 times higher compared with bulk structure. More importantly, Hf-g-C3 N4 can produce CH4 at the rate of 1.63 µmol g-1 h-1 without help of co-catalyst and hole sacrificial agent in the photocatalytic reduction reaction of CO2 to CH4 . At same time, the selective photocatalytic reduction of CO2 is another advantage of Hf-g-C3 N4 .
Keyphrases
  • visible light
  • metal organic framework
  • molecularly imprinted
  • reduced graphene oxide
  • dna damage
  • preterm infants
  • heart failure
  • oxidative stress
  • mass spectrometry
  • gestational age
  • monte carlo