Login / Signup

3-Cl-AHPC inhibits pro-HGF maturation by inducing matriptase/HAI-1 complex formation.

Fang YeShuang ChenXingxing LiuXiaohong YeKeqi WangZhiping ZengYing SuXiao-Kun ZhangHu Zhou
Published in: Journal of cellular and molecular medicine (2018)
Matriptase is an epithelia-specific membrane-anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor-1 (HAI-1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI-1 complex formation determines the intensity and duration of matriptase activity. 3-Cl-AHPC, 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid, is an adamantly substituted retinoid-related molecule and a ligand of retinoic acid receptor γ (RARγ). 3-Cl-AHPC is of strong anti-cancer effect but with elusive mechanisms. In our current study, we show that 3-Cl-AHPC time- and dose- dependently induces matriptase/HAI-1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3-Cl-AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3-Cl-AHPC inhibits matriptase-mediated cleavage of pro-HGF through matriptase/HAI-1 complex induction, resulting in the suppression of pro-HGF-stimulated signalling and cell scattering. Although 3-Cl-AHPC binds to RARγ, its induction of matriptase/HAI-1 complex is not RARγ dependent. Together, our data demonstrates that 3-Cl-AHPC down-regulates matriptase activity through induction of matriptase/HAI-1 complex formation in a RARγ-independent manner, providing a mechanism of 3-Cl-AHPC anti-cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI-1 complex induction using small molecules.
Keyphrases
  • growth factor
  • gene expression
  • stem cells
  • immune response
  • young adults
  • transcription factor
  • anti inflammatory
  • single cell
  • bone marrow
  • toll like receptor
  • data analysis
  • artificial intelligence