Self-Healing Metallo-Supramolecular Hydrogel Based on Specific Ni2+ Coordination Interactions of Poly(ethylene glycol) with Bistriazole Pyridine Ligands in the Main Chain.
Xiaowen XuValentin Victor JercaRichard HoogenboomPublished in: Macromolecular rapid communications (2020)
In this study, a supramolecular hydrogel formed by incorporating the 2,6-bis(1,2,3-triazol-4-yl)-pyridine (btp) ligand in the backbone of a polymer prepared by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click" polyaddition reaction of 2,6-diethynylpyridine and diazido-poly(ethylene glycol) is reported. The hydrogelation is selectively triggered by the addition of Ni2+ ions to aqueous copolymer solutions. The gelation and rheological properties could be tuned by the change of metal to ligand ratio and polymer concentration. Interestingly, the hydrogel exhibits a fast (within 2 min) and excellent repeatable autonomic healing capacity without external stimuli. This self-healing behavior may find potential applications for the repairing of metal coatings, in the future.