Login / Signup

Soft Polymer-Based Technique for Cellular Force Sensing.

Zhuonan YuKuo-Kang Liu
Published in: Polymers (2021)
Soft polymers have emerged as a vital type of material adopted in biomedical engineering to perform various biomechanical characterisations such as sensing cellular forces. Distinct advantages of these materials used in cellular force sensing include maintaining normal functions of cells, resembling in vivo mechanical characteristics, and adapting to the customised functionality demanded in individual applications. A wide range of techniques has been developed with various designs and fabrication processes for the desired soft polymeric structures, as well as measurement methodologies in sensing cellular forces. This review highlights the merits and demerits of these soft polymer-based techniques for measuring cellular contraction force with emphasis on their quantitativeness and cell-friendliness. Moreover, how the viscoelastic properties of soft polymers influence the force measurement is addressed. More importantly, the future trends and advancements of soft polymer-based techniques, such as new designs and fabrication processes for cellular force sensing, are also addressed in this review.
Keyphrases
  • single molecule
  • drug delivery
  • high resolution
  • oxidative stress
  • cell death
  • atomic force microscopy
  • bone marrow
  • finite element analysis
  • endoplasmic reticulum stress
  • low cost
  • high speed