Chasing collective variables using temporal data-driven strategies.
Haochuan ChenChristophe J ChipotPublished in: QRB discovery (2023)
The convergence of free-energy calculations based on importance sampling depends heavily on the choice of collective variables (CVs), which in principle, should include the slow degrees of freedom of the biological processes to be investigated. Autoencoders (AEs), as emerging data-driven dimension reduction tools, have been utilised for discovering CVs. AEs, however, are often treated as black boxes, and what AEs actually encode during training, and whether the latent variables from encoders are suitable as CVs for further free-energy calculations remains unknown. In this contribution, we review AEs and their time-series-based variants, including time-lagged AEs (TAEs) and modified TAEs, as well as the closely related model variational approach for Markov processes networks (VAMPnets). We then show through numerical examples that AEs learn the high-variance modes instead of the slow modes. In stark contrast, time series-based models are able to capture the slow modes. Moreover, both modified TAEs with extensions from slow feature analysis and the state-free reversible VAMPnets (SRVs) can yield orthogonal multidimensional CVs. As an illustration, we employ SRVs to discover the CVs of the isomerizations of N -acetyl- N '-methylalanylamide and trialanine by iterative learning with trajectories from biased simulations. Last, through numerical experiments with anisotropic diffusion, we investigate the potential relationship of time-series-based models and committor probabilities.
Keyphrases
- gene expression
- dna methylation
- molecular dynamics
- density functional theory
- molecular dynamics simulations
- magnetic resonance
- monte carlo
- depressive symptoms
- deep learning
- computed tomography
- risk assessment
- mass spectrometry
- human health
- climate change
- contrast enhanced
- atomic force microscopy
- virtual reality
- neural network
- single molecule