Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil.
Precious Uchenna OkoroaforClement Oluseye OgunkunleHermann HeilmeierOliver WichePublished in: International journal of phytoremediation (2022)
Given the possible benefits of phytoextraction, this study evaluated the potential of nine plant species for phytoaccumulation/co-accumulation of selected nutrients, rare earth elements, germanium, and potentially toxic elements. Plants were grown on 2 kg potted soils for 12 weeks in a greenhouse, followed by a measurement of dry shoot biomass. Subsequently, elemental concentrations were determined using inductively coupled mass spectrometry, followed by the determination of amounts of each element accumulated by the plant species. Results show varying accumulation behavior among plants for the different elements. Fagopyrum esculentum and Cannabis sativa were better accumulators of most elements investigated except for chromium, germanium, and silicon that were better accumulated by Zea mays , the only grass species. F. esculentum accumulated 9, 24, and 10% of Copper, Chromium, and Rare Earth Elements in the mobile/exchangeable element fraction of the soils while Z. mays and C. sativa accumulated amounts of Cr and Ge ∼58 and 17% (for Z. mays ) and 20 and 9% (for C. sativa ) of the mobile/exchangeable element fraction of the soils. Results revealed co-accumulation potential for some elements e.g., (1) Si, Ge, and Cr, (2) Cu and Pb, (3) P, Ca, Co, and REEs based on chemical similarities/sources of origin.