Tailoring Electrical Properties in Carbon Nanomaterial Patterns with Multimaterial Aerosol Jet Printing.
Livio GambaMoham Ed Abdur RazzaqSantiago Diaz-ArauzoMark C HersamXianglan BaiEthan B SecorPublished in: ACS applied materials & interfaces (2023)
Multimaterial aerosol jet printing offers a unique capability to freely mix inks with different chemical compositions in the aerosol phase, enabling one-step digital fabrication with tailored compositions or functionally graded structures, including in the x-y plane. Here, in situ mixing of two carbon nanomaterial inks with distinct electrical properties is demonstrated. By tailoring the mixing ratio of the constituent inks, electrical conductivity is modulated by 130×, and sheet resistance values for a single pass span approximately 2 orders of magnitude. The ability to manufacture components with tailored electrical properties offers significant value for hybrid and flexible electronic device applications, such as microelectronics packaging. Moreover, grading properties within a part provides a new dimension of design freedom for complex assemblies.
Keyphrases