Unveiling the Spatiotemporal and Dose Responses within a Single Live Cancer Cell to Photoswitchable Upconversion Nanoparticle Therapeutics Using Hybrid Hyperspectral Stimulated Raman Scattering and Transient Absorption Microscopy.
Le XinZichao LuoXiaogang LiuZhiwei HuangPublished in: Analytical chemistry (2024)
Photodynamic therapy (PDT) provides an alternative approach to targeted cancer treatment, but the therapeutic mechanism of advanced nanodrugs applied to live cells and tissue is still not well understood. Herein, we employ the hybrid hyperspectral stimulated Raman scattering (SRS) and transient absorption (TA) microscopy developed for real-time in vivo visualization of the dynamic interplay between the unique photoswichable lanthanide-doped upconversion nanoparticle-conjugated rose bengal and triphenylphosphonium (LD-UCNP@CS-Rb-TPP) probe synthesized and live cancer cells. The Langmuir pharmacokinetic model associated with SRS/TA imaging is built to quantitatively track the uptakes and pharmacokinetics of LD-UCNP@CS-Rb-TPP within cancer cells. Rapid SRS/TA imaging quantifies the endocytic internalization rates of the LD-UCNP@CS-Rb-TPP probe in individual HeLa cells, and the translocation of LD-UCNP@CS-Rb-TPP from mitochondria to cell nuclei monitored during PDT can be associated with mitochondria fragmentations and the increased nuclear membrane permeability, cascading the dual organelle ablations in cancer cells. The real-time SRS spectral changes of cellular components (e.g., proteins, lipids, and DNA) observed reflect the PDT-induced oxidative damage and the dose-dependent death pattern within a single live cancer cell, thereby facilitating the real-time screening of optimal light dose and illumination duration controls in PDT. This study provides new insights into the further understanding of drug delivery and therapeutic mechanisms of photoswitchable LD-UCNP nanomedicine in live cancer cells, which are critical in the optimization of nanodrug formulations and development of precision cancer treatment in PDT.
Keyphrases
- photodynamic therapy
- fluorescence imaging
- high resolution
- single molecule
- cell cycle arrest
- induced apoptosis
- drug delivery
- cell death
- quantum dots
- optical coherence tomography
- cancer therapy
- living cells
- high throughput
- oxidative stress
- cerebral ischemia
- high speed
- stem cells
- single cell
- cell therapy
- cell free
- drug induced
- mass spectrometry
- reactive oxygen species
- endoplasmic reticulum
- iron oxide
- blood brain barrier
- highly efficient
- stress induced