Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis.
Alex LewinShea HamiltonAviva WitkoverPaul R LangfordRichard NicholasJeremy ChatawayCharles R M BanghamPublished in: Wellcome open research (2016)
Background A major cause of disability in secondary progressive multiple sclerosis (SPMS) is progressive brain atrophy, whose pathogenesis is not fully understood. The objective of this study was to identify protein biomarkers of brain atrophy in SPMS. Methods We used surface-enhanced laser desorption-ionization time-of-flight mass spectrometry to carry out an unbiased search for serum proteins whose concentration correlated with the rate of brain atrophy, measured by serial MRI scans over a 2-year period in a well-characterized cohort of 140 patients with SPMS. Protein species were identified by liquid chromatography-electrospray ionization tandem mass spectrometry. Results There was a significant (p<0.004) correlation between the rate of brain atrophy and a rise in the concentration of proteins at 15.1 kDa and 15.9 kDa in the serum. Tandem mass spectrometry identified these proteins as alpha-haemoglobin and beta-haemoglobin, respectively. The abnormal concentration of free serum haemoglobin was confirmed by ELISA (p<0.001). The serum lactate dehydrogenase activity was also highly significantly raised (p<10-12) in patients with secondary progressive multiple sclerosis. Conclusions An underlying low-grade chronic intravascular haemolysis is a potential source of the iron whose deposition along blood vessels in multiple sclerosis plaques contributes to the neurodegeneration and consequent brain atrophy seen in progressive disease. Chelators of free serum iron will be ineffective in preventing this neurodegeneration, because the iron (Fe2+) is chelated by haemoglobin.
Keyphrases
- multiple sclerosis
- white matter
- tandem mass spectrometry
- liquid chromatography
- resting state
- ultra high performance liquid chromatography
- low grade
- high performance liquid chromatography
- simultaneous determination
- functional connectivity
- mass spectrometry
- gas chromatography
- magnetic resonance imaging
- high resolution
- high grade
- computed tomography
- cerebral ischemia
- solid phase extraction
- contrast enhanced
- risk assessment
- climate change
- magnetic resonance
- amino acid
- protein protein
- monoclonal antibody
- metal organic framework