Login / Signup

A covalent compound selectively inhibits RNA demethylase ALKBH5 rather than FTO.

Gan-Qiang LaiYali LiHeping ZhuTao ZhangJing GaoHu ZhouCai-Guang Yang
Published in: RSC chemical biology (2024)
N 6 -Methyladenosine (m 6 A) is the most prevalent mRNA modification and is required for gene regulation in eukaryotes. ALKBH5, an m 6 A demethylase, is a promising target, particularly for anticancer drug discovery. However, the development of selective and potent inhibitors of ALKBH5 rather than FTO remains challenging. Herein, we used a targeted covalent inhibition strategy and identified a covalent inhibitor, TD19, which selectively inhibits ALKBH5 compared with FTO demethylase in protein-based and tumor cell-based assays. TD19 irreversibly modifies the residues C100 and C267, preventing ALKBH5 from binding to m 6 A-containing RNA. Moreover, TD19 displays good anticancer efficacy in acute myeloid leukemia and glioblastoma multiforme cell lines. Thus, the ALKBH5 inhibitor developed in this study, which selectively targets ALKBH5 compared with FTO, can potentially be used as a probe for investigating the biological functions of RNA demethylase and as a lead compound in anticancer research.
Keyphrases
  • drug discovery
  • stem cells
  • high throughput
  • single cell
  • binding protein
  • mesenchymal stem cells
  • quantum dots
  • small molecule
  • drug delivery
  • living cells