Login / Signup

Enhanced Sensing Performance of a Microchannel-Based Electrochemiluminescence Biosensor for Adenosine Triphosphate via a dsDNA Superstructure Amplification Strategy.

Yanling HuangWeixin LiJianping ZhengFang LuoBin QiuJian WangCuiying LinZhenyu Lin
Published in: ACS applied materials & interfaces (2022)
The sensing performance of a microchannel-based electrochemiluminescence (ECL) biosensor is related to the change ratio of charge density on the surface of microchannels caused by a target recognition reaction. In this study, adenosine triphosphate (ATP) served as a model target. The dsDNA superstructures containing a capture probe (CP, containing an ATP aptamer sequence) and alternating units of ssDNA probes of P1 and P2, CP/(P1/P2) n , were grafted onto the inner wall of microchannels first. The CP in dsDNA superstructures captured ATP molecules, causing the release of dsDNA fragments containing alternating units of P1 and P2, (P1/P2) n . The target recognition reaction significantly changed the charge density of microchannels, which altered the ECL intensity of the (1,10-phenanthroline)ruthenium(II)/tripropylamine system in the reporting interface. The ECL intensity of the constructed system had a linear relationship with the logarithm of ATP concentration ranging from 1 fM to 100 pM with a detection limit of 0.32 fM (S/N = 3). The biosensor was successfully applied to detect ATP in rat brains.
Keyphrases