Login / Signup

Multiscale Heterogeneities-Based Piezoresistive Interfaces with Ultralow Detection Limitation and Adaptively Switchable Pressure Detectability.

Xuecheng HeZequn CuiFeilong ZhangYanzhen LiJiaqi TuJinwei CaoJianwu WangYuchun QiaoPengxu XiTailin XuXiaodong ChenXue-Ji Zhang
Published in: ACS nano (2024)
Mechanical compliance and electrical enhancement are crucial for pressure sensors to promote performances when perceiving external stimuli. Here we propose a bioinspired multiscale heterogeneity-based interface to adaptively regulate its structure layout and switch to desirable piezoresistive behaviors with ultralow detection limitation. In such a multiscale heterogeneities system, the micro-/nanoscale spiny Ag-MnO 2 heterostructure contributes to an ultralow detection limitation of 0.008 Pa and can perceive minor pressure increments under preloads with high resolution (0.0083%). The macroscale heterogeneous orientation of the cellular backbone enables anisotropic deformation, allowing the sensor to switch to rational sensitivity and working range (e.g., 580 kPa -1 for 0-20 kPa/54 kPa -1 for 60-140 kPa) as required. The sensor's stepwise activation progresses from the micro-/nanoscale heterostructure to the macroscale heterogeneous orientation, which can adaptively match diverse sensing tasks in complex applications scenarios. This multiscale heterogeneous and switchable design holds immense potential in the development of intelligent electromechanical devices, including wearable sensors, soft robotics, and smart actuators.
Keyphrases
  • high resolution
  • loop mediated isothermal amplification
  • real time pcr
  • label free
  • climate change
  • heart rate
  • low cost
  • working memory
  • quantum dots
  • highly efficient
  • liquid chromatography
  • visible light