Login / Signup

Ultrastructural and histochemical study of previtellogenic oogenesis in the desert lizard Scincus mitranus (Squamata, Sauropsida).

Othman A AldokhiSaleh AlwaselAbdel Halim Harrath
Published in: Journal of morphology (2019)
The structure of the granulosa in reptilian sauropsids varies between groups. We investigated the follicle development in the desert lizard Scincus mitranus. In the germinal bed, oogonia, and primary oocytes were identified and found to be interspersed between the epithelial cells. Previtellogenesis was divided into three stages: early, transitional, and late previtellogenic stages. During the early previtellogenic stage (diplotene), the oocyte is invested by small epithelia cells that formed a complete single layer, which may be considered as a young follicle. The transitional previtellogenic stage was marked by proliferation and differentiation of the granulosa layer from a homogenous layer consisting of only small cells to a heterogeneous layer containing three cell types: small, intermediate, and large cells. The late previtellogenic stage was marked by high-synthetic activity of large cells and the initiation of cytoplasmic bridges between large granulosa cells and the oocyte. Small cells were the only type of granulosa cells that underwent division. Thus, these cells may be stem cells for the granulosa cell population and may develop into intermediate and subsequently large cells. The intermediate cells may be precursors of large cells, as suggested by their ultrastructure. The ultrastructure of the large granulosa was indicative of their high synthetic activity. Histochemical analysis indicated the presence of cholesterol and phospholipids in the cytoplasm of large cells, the zona pellucida, among the microvilli, in the bridges region, and in the cortical region of the oocyte cytoplasm. These materials may be transferred from large cells into the oocyte through cytoplasmic bridges and provide nutritive function to large cells rather than functioning in steroidogenesis or vitellogenesis.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • stem cells
  • endoplasmic reticulum stress
  • signaling pathway
  • cell death
  • oxidative stress
  • cell proliferation
  • atomic force microscopy