Login / Signup

Rose Bengal-Derived Ultrabright Sulfur-Doped Carbon Dots for Fast Discrimination between Live and Dead Cells.

Xin-Wang YuXiaoyang LiuYao-Wen JiangYan-Hong LiGe GaoYa-Xuan ZhuFengming LinFu-Gen Wu
Published in: Analytical chemistry (2022)
The discrimination between dead and live cells is crucial for cell viability evaluation. Carbon dots (CDs), with advantages like simple and cost-effective synthesis, excellent biocompatibility, and high photostability, have shown potential for realizing selective live/dead cell staining. However, most of the developed CDs with the live/dead cell discrimination capacity usually have low photoluminescence quantum yields (PLQYs) and excitation wavelength-dependent fluorescence emission (which can cause fluorescence overlap with other fluorescent probes and make dual-color live/dead staining impossible), and hence, developing ultrabright CDs with excitation wavelength-independent fluorescence emission property for live/dead cell discrimination becomes an important task. Here, using a one-pot hydrothermal method, we prepared ultrasmall (∼1.6 nm), ultrabright (PLQY: ∼78%), and excitation wavelength-independent sulfur-doped carbon dots (termed S-CDs) using rose bengal and 1,4-dimercaptobenzene as raw materials and demonstrated that the S-CDs could rapidly (∼5 min) and accurately distinguish dead cells from live ones for almost all the cell types including bacterial, fungal, and animal cells in a wash-free manner. We confirmed that the S-CDs could rapidly pass through the dead cell surfaces to enter the interior of the dead cells, thus visualizing these dead cells. In contrast, the S-CDs could not enter the interior of live cells and thus could not stain these live cells. We further verified that the S-CDs presented better biocompatibility and higher photostability than the commercial live/dead staining dye propidium iodide, ensuring its bright application prospect in cell imaging and cell viability assessment. Overall, this work develops a type of CDs capable of realizing the live/dead cell discrimination of almost all the cell types (bacterial, fungal, and animal cells), which has seldom been achieved by other fluorescent nanoprobes.
Keyphrases