Login / Signup

A Highly Sensitive 3D Resonator Sensor for Fluid Measurement.

Ali M AlbishiOmar M Ramahi
Published in: Sensors (Basel, Switzerland) (2023)
Planar sub-wavelength resonators have been used for sensing applications, but different types of resonators have different advantages and disadvantages. The split ring resonator (SRR) has a smaller sensing region and is suitable for microfluidic applications, but the sensitivity can be limited. Meanwhile, the complementary electric-LC resonator (CELCR) has a larger sensing region and higher sensitivity, but the topology cannot be easily designed to reduce the sensing region. In this work, we propose a new design that combines the advantages of both SRR and CELCR by incorporating metallic bars in a trapezoid-shaped resonator (TSR). The trapezoid shape allows for the sensing region to be reduced, while the metallic bars enhance the electric field in the sensing region, resulting in higher sensitivity. Numerical simulations were used to design and evaluate the sensor. For validation, the sensor was fabricated using PCB technology with aluminum bars and tested on dielectric fluids. The results showed that the proposed sensor provides appreciably enhanced sensitivity in comparison to earlier sensors.
Keyphrases
  • high throughput
  • mass spectrometry
  • single cell
  • circulating tumor cells
  • fluorescent probe
  • living cells