Autonomous Molecular Design: Then and Now.
Tanja DimitrovChristoph KreisbeckJill S BeckerAlán Aspuru-GuzikSemion K SaikinPublished in: ACS applied materials & interfaces (2019)
The success of deep machine learning in processing of large amounts of data, for example, in image or voice recognition and generation, raises the possibilities that these tools can also be applied for solving complex problems in materials science. In this forum article, we focus on molecular design that aims to answer the question on how we can predict and synthesize molecules with tailored physical, chemical, or biological properties. A potential answer to this question could be found by using intelligent systems that integrate physical models and computational machine learning techniques with automated synthesis and characterization tools. Such systems learn through every single experiment in an analogy to a human scientific expert. While the general idea of an autonomous system for molecular synthesis and characterization has been around for a while, its implementations for the materials sciences are sparse. Here we provide an overview of the developments in chemistry automation and the applications of machine learning techniques in the chemical and pharmaceutical industries with a focus on the novel capabilities that deep learning brings in.