Login / Signup

Clocks and meals keep mice from being cool.

Vincent van der VinneMark J BingamanDavid R WeaverSteven J Swoap
Published in: The Journal of experimental biology (2018)
Daily torpor is used by small mammals to reduce daily energy expenditure in response to energetic challenges. Optimizing the timing of daily torpor allows mammals to maximize its energetic benefits and, accordingly, torpor typically occurs in the late night and early morning in most species. However, the regulatory mechanisms underlying such temporal regulation have not been elucidated. Direct control by the circadian clock and indirect control through the timing of food intake have both been suggested as possible mechanisms. Here, feeding cycles outside of the circadian range and brain-specific mutations of circadian clock genes (Vgat-Cre+ CK1δfl/fl εfl/+ ; Vgat-Cre+ Bmal1fl/fl ) were used to separate the roles of the circadian clock and food timing in controlling the timing of daily torpor in mice. These experiments revealed that the timing of daily torpor is transiently inhibited by feeding, while the circadian clock is the major determinant of the timing of torpor. Torpor never occurred during the early part of the circadian active phase, but was preferentially initiated late in the subjective night. Food intake disrupted torpor in the first 4-6 h after feeding by preventing or interrupting torpor bouts. Following interruption, re-initiation of torpor was unlikely until after the next circadian active phase. Overall, these results demonstrate that feeding transiently inhibits torpor while the central circadian clock gates the timing of daily torpor in response to energetic challenges by restricting the initiation of torpor to a specific circadian phase.
Keyphrases
  • physical activity
  • type diabetes
  • risk assessment
  • depressive symptoms
  • brain injury
  • insulin resistance
  • protein kinase
  • single cell
  • wild type