Login / Signup

Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy.

Jikai XuZhihao RenBowei DongXinmiao LiuChenxi WangYanhong TianChengkuo Lee
Published in: ACS nano (2020)
As one of the most effective surface-enhanced infrared absorption (SEIRA) techniques, metal-insulator-metal structured metamaterial perfect absorbers possess an ultrahigh sensitivity and selectivity in molecular infrared fingerprint detection. However, most of the localized electromagnetic fields (i.e., hotspots) are confined in the dielectric layer, hindering the interaction between analytes and hotspots. By replacing the dielectric layer with the nanofluidic channel, we develop a sapphire (Al2O3)-based mid-infrared (MIR) hybrid nanofluidic-SEIRA (HN-SEIRA) platform for liquid sensors with the aid of a low-temperature interfacial heterogeneous sapphire wafer direct bonding technique. The robust atomic bonding interface is confirmed by transmission electron microscope observation. We also establish a design methodology for the HN-SEIRA sensor using coupled-mode theory to carry out the loss engineering and experimentally validate its feasibility through the accurate nanogap control. Thanks to the capillary force, liquid analytes can be driven into sensing hotspots without external actuation systems. Besides, we demonstrate an in situ real-time dynamic monitoring process for the acetone molecular diffusion in deionized water. A small concentration change of 0.29% is distinguished and an ultrahigh sensitivity (0.8364 pmol-1 %) is achieved. With the aid of IR fingerprint absorption, our HN-SEIRA platform brings the selectivity of liquid molecules with similar refractive indexes. It also resolves water absorption issues in traditional IR liquid sensors thanks to the sub-nm long light path. Considering the wide transparency window of Al2O3 in MIR (up to 5.2 μm), the HN-SEIRA platform covers more IR absorption range for liquid sensing compared to fused glass commonly used in micro/nanofluidics. Leveraging the aforementioned advantages, our work provides insights into developing a MIR real-time liquid sensing platform with intrinsic IR fingerprint selectivity, label-free ultrahigh sensitivity, and ultralow analyte volume, demonstrating a way toward quantitative molecule identification and dynamic analysis for the chemical and biological reaction processes.
Keyphrases
  • ionic liquid
  • label free
  • cell proliferation
  • long non coding rna
  • high throughput
  • single molecule
  • long noncoding rna
  • high resolution
  • photodynamic therapy
  • single cell
  • high frequency