Ultralarge Single-Layer Porous Protein Nanosheet for Precise Nanosize Separation.
Shenxiang ZhangJianting ZhangWangxi FangYejun ZhangQiangbin WangJian JinPublished in: Nano letters (2018)
Highly permeable and precisely size-selective membranes are the subject of continuous pursuit for energy-efficient separation of fine chemicals. However, challenges remain in the fabrication of an ultrathin selective layer with homogeneous pores, in particular, with the pore sizes in the 1-10 nm range. We report the design of a free-standing porous nanosheet assembled with a single layer of proteins. Tobacco mosaic virus mutant (TMVm), a cylinder-shaped protein containing an inner pore of 4 nm in diameter, was cross-linked via a Cu2+-catalyzed disulfide-bond-forming reaction along the 2D orientation. By such a design, ultralarge single-layer TMVm nanosheets extending over tens of micrometers in width and with well-defined nanopores were successfully developed. A ∼40 nm thick ultrafiltration membrane laminated by the single-layer TMVm nanosheets through simple vacuum filtration accomplished the precise separation of ∼4 nm sized substances. Meanwhile, the membrane exhibited water permeance up to ∼7000 L m-2 h-1 bar-1, which is an order of magnitude improvement compared with traditional ultrafiltration membranes with a similar rejection profile.