Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response.
Po-Kai HsuYohei TakahashiEbe MeriloAlex CostaLi ZhangKlara KernigKatie H LeeJulian I SchroederPublished in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12 / mpk4GC double mutants that completely disrupt stomatal CO 2 signaling, indicating that VPD signaling is independent of the early CO 2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca 2+ transients in guard cells. Nevertheless, osca1-2 / 1.3 / 2.2 / 2.3 / 3.1 Ca 2+ -permeable channel quintuple, osca1.3 / 1.7 -channel double, cngc5 / 6 -channel double, cngc20 -channel single, cngc19 / 20crispr -channel double, glr3.2 / 3.3 -channel double, cpk- kinase quintuple, cbl1 / 4 / 5 / 8 / 9 quintuple, and cbl2 / 3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1 / δ5 / δ6 / δ7 ( raf3 / 6 / 5 / 4 ) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD-induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient "wrong-way" VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD-induced stomatal closing response pathway.
Keyphrases