Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles.
Hamideh BasiriSeyed Sepehr MohseniAli Abouei MehriziAlireza RajabnejadkeleshteriAzadeh GhaeeMehdi FarokhiEugenia KumachevaPublished in: Biomacromolecules (2021)
Monitoring the supply of vascular endothelial growth factor (VEGF) to ischemic tissues provides information on its biodistribution and delivery to meet the requirements of therapeutic angiogenesis and tissue engineering applications. We herein report the use of microfluidically generated microgels containing VEGF-conjugated fluorescent carbon dots (CDs) (VEGF-CDs), a gelatin-phenol conjugate, and silk fibroin for imaging-monitored tracking of VEGF delivery to ischemic muscles. An in vitro release study and a bioactivity assay indicated that the VEGF-CDs were released in a sustained manner with high bioactivity. The microgels showed a high angiogenesis potential, along with a strong fluorescent signal, for the chicken chorioallantoic membrane and chick embryo. Imaging and studies of therapeutic modalities of the composite microgels indicated their effective localization in ischemic tissues and sustained VEGF release, which resulted in enhanced therapeutic angiogenesis of ischemic muscles. This work reveals the success of using VEGF-loaded composite polymer microgels for efficient and monitored VEGF delivery by intramuscular administration for ischemic disease treatment.
Keyphrases