Login / Signup

Long-term transmission of entangled photons from a single quantum dot over deployed fiber.

Zi-Heng XiangJan HuwerR Mark StevensonJoanna Skiba-SzymanskaMartin B WardIan FarrerDavid A RitchieAndrew J Shields
Published in: Scientific reports (2019)
Entangled light sources are considered as core technology for multiple quantum network architectures. Of particular interest are sources that are based on a single quantum system as these offer intrinsic security due to the sub-Poissonian nature of the photon emission process. This is important for applications in quantum communication where multi-pair emission generally compromises performance. A large variety of sources has been developed, but the generated photons remained far from being utilized in established standard fiber networks, mainly due to lack of compatibility with telecommunication wavelengths. In this regard, single semiconductor quantum dots are highly promising photon pair sources as they can be engineered for direct emission at telecom wavelengths. In this work we demonstrate the feasibility of this approach. We report a week-long transmission of polarization-entangled photons from a single InAs/GaAs quantum dot over a metropolitan network fiber. The photons are in the telecommunication O-band, favored for fiber optical communication. We employ a polarization stabilization system overcoming changes of birefringence introduced by 18.23 km of installed fiber. Stable transmission of polarization-encoded entanglement with a high fidelity of 91% is achieved, facilitating the operation of sub-Poissonian quantum light sources over existing fiber networks.
Keyphrases
  • drinking water
  • molecular dynamics
  • quantum dots
  • monte carlo
  • clinical trial
  • high resolution
  • room temperature
  • solid state
  • single molecule