Terpyridine-Based 3D Metal-Organic-Frameworks: A Structure-Property Correlation.
Syed Meheboob ElahiMukul RaizadaPradip Kumar SahuSanjit KonarPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Design, synthesis, and applications of metal-organic frameworks (MOFs) are among the most salient fields of research in modern inorganic and materials chemistry. As the structure and physical properties of MOFs are mostly dependent on the organic linkers or ligands, the choice of ligand system is of utmost importance in the design of MOFs. One such crucial organic linker/ligand is terpyridine (tpy), which can adopt various coordination modes to generate an enormous number of metal-organic frameworks. These frameworks generally carry physicochemical characteristics induced by the π-electron-rich (basically N-electron-rich moiety) terpyridines. In this minireview, the construction of 3D MOFs associated with symmetrical terpyridines is discussed. These ligands can be easily derivatized at the lateral phenyl (4'-phenyl) position and incorporate additional organic functionalities. These functionalities lead to some different binding modes and form higher dimensional (3D) frameworks. Therefore, these 3D MOFs can carry multiple features along with the characteristics of terpyridines. Some properties of these MOFs, like photophysical, chemical selectivity, photocatalytic degradation, proton conductivity, and magnetism, etc. have also been discussed and correlated with their frameworks.