Login / Signup

A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning.

Ali H Al-TimemyLaith AlzubaidiZahraa M MosaHazem Abdel MotaalNebras H GhaebAlexandru LavricRossen M HazarbassanovHidenori TakahashiYuantong GuSiamak Yousefi
Published in: Diagnostics (Basel, Switzerland) (2023)
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97-100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with 213 eyes examined in Iraq and obtained AUCs of 0.91-0.92 and an accuracy range of 88-92%. The proposed model is a step toward improving the detection of clinical and subclinical forms of KCN.
Keyphrases