Login / Signup

Gas exchange and water-use efficiency in plant canopies.

Lucas A Cernusak
Published in: Plant biology (Stuttgart, Germany) (2018)
In this review, I first address the basics of gas exchange, water-use efficiency and carbon isotope discrimination in C3 plant canopies. I then present a case study of water-use efficiency in northern Australian tree species. In general, C3 plants face a trade-off whereby increasing stomatal conductance for a given set of conditions will result in a higher CO2 assimilation rate, but a lower photosynthetic water-use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water-use efficiency. This may explain why community-level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water-use efficiency that take place during leaf expansion in C3 plant leaves. Leaf phenology has recently been recognised as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water-use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respired CO2 can increase whole-plant water-use efficiency. Finally, I discuss the role of water-use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmospheric CO2 . In coming decades, increases in plant water-use efficiency caused by rising CO2 are likely to partially mitigate impacts on plants of drought stress caused by global warming.
Keyphrases
  • healthcare
  • climate change
  • mental health
  • room temperature
  • mass spectrometry
  • tertiary care