Automated evaluation of colon capsule endoscopic severity of ulcerative colitis using ResNet50.
Naoki HiguchiHiroto HiragaYoshihiro SasakiNoriko HiragaShohei IgarashiKeisuke HasuiKohei OgasawaraTakato MaedaYasuhisa MuraiTetsuya TatsutaHidezumi KikuchiDaisuke ChindaTatsuya MikamiMasashi MatsuzakaHirotake SakurabaShinsaku FukudaPublished in: PloS one (2022)
Capsule endoscopy has been widely used as a non-invasive diagnostic tool for small or large intestinal lesions. In recent years, automated lesion detection systems using machine learning have been devised. This study aimed to develop an automated system for capsule endoscopic severity in patients with ulcerative colitis along the entire length of the colon using ResNet50. Capsule endoscopy videos from patients with ulcerative colitis were collected prospectively. Each single examination video file was partitioned into four segments: the cecum and ascending colon, transverse colon, descending and sigmoid colon, and rectum. Fifty still pictures (576 × 576 pixels) were extracted from each partitioned video. A patch (128 × 128 pixels) was trimmed from the still picture at every 32-pixel-strides. A total of 739,021 patch images were manually classified into six categories: 0) Mayo endoscopic subscore (MES) 0, 1) MES1, 2) MES2, 3) MES3, 4) inadequate quality for evaluation, and 5) ileal mucosa. ResNet50, a deep learning framework, was trained using 483,644 datasets and validated using 255,377 independent datasets. In total, 31 capsule endoscopy videos from 22 patients were collected. The accuracy rates of the training and validation datasets were 0.992 and 0.973, respectively. An automated evaluation system for the capsule endoscopic severity of ulcerative colitis was developed. This could be a useful tool for assessing topographic disease activity, thus decreasing the burden of image interpretation on endoscopists.
Keyphrases
- ulcerative colitis
- deep learning
- ultrasound guided
- disease activity
- rheumatoid arthritis
- machine learning
- systemic lupus erythematosus
- convolutional neural network
- artificial intelligence
- rna seq
- ejection fraction
- high throughput
- ankylosing spondylitis
- risk factors
- optical coherence tomography
- pulmonary artery
- quantum dots
- high intensity
- sensitive detection